Some remarks on pseudo-null submodules of tamely ramified Iwasawa modules
نویسندگان
چکیده
منابع مشابه
Tamely Ramified Extension’s Structure
The structure of an algebraic tamely ramified extension of a henselian valued field is studied. We will prove, in theorem 3.2, the following statement: A finite extension L/K is tamely ramified if and only if the field L is obtained from the maximal unramified extension T by adjoining the radicals m √ t, with t ∈ T, m ∈ N, m ≥ 1, (m, p) = 1, where p is the characteristic of the residue class fi...
متن کاملSome remarks on generalizations of classical prime submodules
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. Suppose that $phi:S(M)rightarrow S(M)cup lbraceemptysetrbrace$ be a function where $S(M)$ is the set of all submodules of $M$. A proper submodule $N$ of $M$ is called an $(n-1, n)$-$phi$-classical prime submodule, if whenever $r_{1},ldots,r_{n-1}in R$ and $min M$ with $r_{1}ldots r_{n-1}min Nsetminusphi(N)$, then $r_{1...
متن کاملSome remarks on multiplication modules
In this note all rings are commutat ive rings with identity and all modules are unital. Let R be a commutat ive ring with identity. An R-module M is called a mult ipl icat ion module provided for each submodule N of M there exists an ideal I of R such that N = I M. Various propert ies of mult ipl icat ion modules are considered. If there is a common theme it is that the methods used generalise ...
متن کاملSOME REMARKS ON ALMOST UNISERIAL RINGS AND MODULES
In this paper we study almost uniserial rings and modules. An R−module M is called almost uniserial if any two nonisomorphic submodules are linearly ordered by inclusion. A ring R is an almost left uniserial ring if R_R is almost uniserial. We give some necessary and sufficient condition for an Artinian ring to be almost left uniserial.
متن کاملSome Remarks on Free Multiplication Modules
The purpose of this paper is to explore some basic facts from radical of submodules in the free multiplication R-module M = Rn. Mathematics Subject Classification: 13C13, 13C99
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux
سال: 2018
ISSN: 1246-7405,2118-8572
DOI: 10.5802/jtnb.1038